在java.util.concurrent包中提供了一个线程安全版本的Map类型数据结构:ConcurrentMap。本篇文章主要关注ConcurrentMap接口以及它的Hash版本的实现ConcurrentHashMap。
一、ConcurrentMap
与Map接口相比,ConcurrentMap多了4个方法:
1)putIfAbsent方法:如果key不存在,添加key-value。方法会返回与key关联的value
V putIfAbsent(K key, V value);
2)remove方法
boolean remove(Object key, Object value);
Map接口中也有一个remove方法:
V remove(Object key);
ConcurrentMap中的remove方法需要比较原有的value和参数中的value是否一致,只有一致才会删除。
3)Replace方法:有2个重载
boolean replace(K key, V oldValue, V newValue);V replace(K key, V value);
两个重载的区别和2)中的两个remove方法的区别很类似,多了一个检查value一致。
二、ConcurrentHashMap
ConcurrentHashMap和HashMap类似,这里重点关注的是如何实现线程安全,也就是如何加锁。
对于HashMap来说,有一个Entry数组,根据Key的hash值对数组长度取模得到数组下标,找到Entry,遍历整个Entry链表,用equals比较来确定key所在的Entry。
ConcurrentHashMap的基本思想是采取分块的方式加锁,分块数由参数“concurrencyLevel”来决定(和HashMap中的“initialCapacity”类似,实际块数是第一个大于concurrencyLevel的2的n次方)。每个分块被称为Segment,Segment的索引方式和HashMap中的Entry索引方式一致(hash值对数组长度取模)。
对Segment加锁的方式很简单,直接把Segment定义为ReentrantLock的子类。同时Segment又是一个特定实现的hash table。
static final class Segmentextends ReentrantLock implements Serializable
下面分析ConcurrentHashMap读写时如何加锁。
首先是读操作类的方法,来看get方法:
public V get(Object key) { Segments; // manually integrate access methods to reduce overhead HashEntry [] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment )UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry e = (HashEntry ) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
可以看到,读取的时候没有调用的Segment的获取锁的方法,而是通过hash值定位到Entry,然后遍历Entry的链表。
为什么这里不用加锁呢?看看HashEntry的代码就会明白了。
static final class HashEntry{ final int hash; final K key; volatile V value; volatile HashEntry next;
value和next属性是带有volatile修饰符的,可以大胆放心的遍历和比较。
接着是写操作,写操作是肯定要加锁的。因为Segment可以看成是一个hash table,因此ConcurrentHashMap直接调用Segment的对应的写入方法如put,replace等。
比如put方法
public V put(K key, V value) { Segments; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment )UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); }
因此这里直接关注Segment的对应写操作方法即可。在每个写操作的方法开头都这样的类似代码:
final V remove(Object key, int hash, Object value) { if (!tryLock()) scanAndLock(key, hash);
HashEntrynode = tryLock() ? null : scanAndLockForPut(key, hash, value
也就是,首先尝试获取锁,如果成功则会带锁继续操作,失败则要通过scanAndLock或scanAndLockForPut获取锁,因此这里关注的重点也就转移到这两个方法了。
按照多线程环境的规则,如果尝试获取锁失败的话就会进入阻塞等待状态,那么这两个方法的作用应该是类似的。
private HashEntryscanAndLockForPut(K key, int hash, V value) { HashEntry first = entryForHash(this, hash); HashEntry e = first; HashEntry node = null; int retries = -1; // negative while locating node while (!tryLock()) { HashEntry f; // to recheck first below if (retries < 0) { if (e == null) { if (node == null) // speculatively create node node = new HashEntry (hash, key, value, null); retries = 0; } else if (key.equals(e.key)) retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { e = first = f; // re-traverse if entry changed retries = -1; } } return node; }
这两个方法的逻辑:在等待的时候闲着没事儿干把该做好的准备做好,查找一下目标entry,如果是新建entry就把entry创建好,然后如果一切没问题就用lock()方法把自己给阻塞了,也就是做好准备然后去等着了。